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1. Introduction

In reality, a physical system often includes some uncertain parameters. These uncertain
parameters usually can be modelled as random variables with known statistical properties. A
system with random variables as its coefficients is known as a random system. Thus, there is a
need for statistical analysis of the response problem of a random system. The dynamical response
problems of a random system subject to random excitations are very complicated in nature,
especially for evolutionary random response problems. Mainly there are three kinds of
mathematical methods available for dealing with these complicated response problems. The first
one is the Monte-Carlo method [1], which is simple and universal, but usually involved with a
quite amount of computational effort. The second one is the stochastic perturbation method,
which is involved with the least computational effort, but usually restricted to systems with
random variables of small fluctuations only [2]. The third one is the orthogonal polynomial
approximation method, which is free from the small perturbation assumption, thus providing
more applicability, and which is involved with moderate computational effort, but with a quite
amount of mathematical deductions [3–5]. Moreover, the choice of the orthogonal basis depends
upon the probability density functions (PDF) of the random variables. Two typical probability
density functions of random parameters are commonly chosen in response analysis of random
systems, namely, the normal distribution and the uniform distribution in a finite interval. In this
regard, Hermite Polynomials are chosen for the former one and Legendre Polynomials are chosen
for the latter one as the orthogonal basis respectively. However, taking the normal distribution
runs the risk of that part of the sample systems may have negative parameters, which would result
in instability of these sample systems. Taking the uniform distribution assumption for random
variables varying between –1 and +1, will not risk the instability problem. For an alternative
choice, an arch-like probability density function may be also reasonable in reality, and will not
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take the risk of instability, too. An arch-like probability density function in Fig. 1 can be
described as follows:

pðxÞ ¼
ð2=pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
; when jxjp1;

0; when jxj > 1:

(
ð1Þ

In accordance with this PDF, Chebyshev Polynomials of the second kind can be chosen as the
orthogonal basis.

2. Chebyshev Polynomials

The general expression for Chebyshev Polynomials of the second kind can be put as follows [6]:

UnðxÞ ¼
Xn=2½ �

k¼0

ð�1Þk
ðn � kÞ!

k!ðn � 2kÞ!
ð2xÞn�2k: ð2Þ

Thus, we have

U0ðxÞ ¼ 1;

U1ðxÞ ¼ 2x;

U2ðxÞ ¼ 4x2 � 1;

U3ðxÞ ¼ 8x3 � 4x;

U4ðxÞ ¼ 16x4 � 12x2 þ 1;

U5ðxÞ ¼ 32x5 � 32x3 þ 6x: ð3Þ

The orthogonality of Chebyshev Polynomials of the second kind can be expressed asZ 1

�1

2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
UiðxÞUjðxÞ dx ¼

1; i ¼ j;

0; iaj:

(
ð4Þ
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Fig. 1. The arch-like PDF curve for x:
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The recurrent formula for Chebyshev Polynomials of the second kind is

Unþ1ðxÞ ¼ 2xUnðxÞ � Un�1ðxÞ; n ¼ 1; 2y; U1ðxÞ ¼ 2xU0ðxÞ: ð5Þ

Eq. (4) represents a weighted orthogonal relationship. Since the weighting function is just the
same as the arch-like PDF, pðxÞ in Eq. (1), the left-hand side of Eq. (4) may be regarded as the
expectation of the product UiðxÞUjðxÞ: It is well known that owing to the orthogonality of
Chebyshev Polynomials, any measurable function f ðxÞ can be expressed into the following series
form:

f ðxÞ ¼
XN
i¼0

giUiðxÞ; ð6Þ

where

gi ¼
Z 1

�1

pðxÞf ðxÞUiðxÞ dx: ð7Þ

Similar results can be obtained for measurable functions of several mutually independent random
variables. For example, suppose x1 and x2 are two mutually independent random variables with
the same PDF as in Eq. (1), noted as pðx1Þ and pðx2Þ respectively; Uiðx1Þ and Ujðx2Þ are Chebyshev
Polynomials of the second kind for x1 and x2; respectively, then any two-dimensional measurable
function f ðx1; x2Þ can be expressed into a double series form

f ðx1; x2Þ ¼
XN
i¼0

XN
j¼0

gijUiðx1ÞUjðx2Þ; ð8Þ

where

gij ¼
Z 1

�1

Z 1

�1

pðx1Þpðx2Þf ðx1; x2ÞUiðx1ÞUjðx2Þ dx1 dx2: ð9Þ

It is noted that Eqs. (6) and (8) are valid only for taking the sum over infinite number of items. If
in practice only a limited number of items are taken in Eqs. (6) or (8), then either of the results is
merely an approximation with a minimal mean square residual.

3. Dynamical response analysis of random system

The discrete model of a random structure usually takes a multi-degree-of-freedom linear
system, of which the random differential equation can be expressed as

M .x þ C ’x þ Kx ¼ F ðtÞ; ð10Þ

where M; C; and K are mass, damping and stiffness matrices, respectively, all with random
variable elements of given statistical properties, and the sample matrices of M are supposed to be
positive-definite; x is an n-vector response; and F ðtÞ is an n-vector excitation. Thus, the response x
must be a random one, whether the excitation FðtÞ is deterministic or not. On the other hand, if
the excitation F ðtÞ is an evolutionary random process, so is the response, whether the system is
random or not. A unified approach to evolutionary random response problems was suggested in
Refs. [7,8] for a deterministic system, whether it is time-independent or not. This unified approach
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can also be applied to random systems in the following two ways. Since any sample of a random
system is a deterministic one, one way is to apply the unified approach directly to the evolutionary
random response problem of a sample system. Then, the ensemble response characteristics are
obtained through the Monte-Carlo simulation for the random system parameters only. The other
way is to apply either the stochastic perturbation technique or the orthogonal approximation
method to reduce the random system into its deterministic equivalent. Then, the evolutionary
random response problem of the equivalent deterministic system is solved by the unified
approach. As a matter of fact, the evolutionary random response problem under the Niigata
earthquake excitation was solved for a random shear beam by the first way [9], and for a discrete
structure model by the second way via the perturbation analysis [10]. Now let us look for how to
reduce the random system into its deterministic equivalent by the Chebyshev Polynomial
approximation.
For simplicity and readability, let M and C in Eq. (10) be deterministic matrices, and K the

random one only. And suppose that all the elements in K only depend upon two mutually
independent physical random stiffness coefficients, x1 and x2; both with an arch-like PDF
described by Eq. (1). Then, the random stiffness matrix K can be expressed as a sum of its mean
matrix %K and two other matrices, each proportional to one of the independent physical random
stiffness coefficients, namely

K ¼ %K þ
X2
i¼1

xiKi; ð11Þ

where %K and Ki are deterministic matrices.
In general, the response vector of system (10) should be a 3-dimensional function xðt; x1; x2Þ:

However, under the assumption that the statistical properties of the random system parameters
are independent of the statistical properties of the random excitation, the response x can be
separable in time and the random variables, so that it is possible to look for the response in the
form

xðt; x1; x2Þ ¼ X ðtÞf ðx1; x2Þ;

where f ðx1; x2Þ is just a scalar function of x1 and x2: Now by Chebyshev Polynomials, Uiðx1Þ and
Ujðx2Þ; i ¼ 0; 1; 2;y; n1; j ¼ 0; 1; 2;y; n2; f ðx1; x2Þ can be further expanded approximately into a
double series of finite terms of orthogonal polynomials. So it is reasonable to look for the system
response approximately in the following form:

xðt; x1; x2Þ ¼
Xn1

i¼0

Xn2

j¼0

XijðtÞUiðx1ÞUjðx2Þ; ð12Þ

where the subscript i runs for sequential number of Chebyshev Polynomials of x1; and j runs for
that of x2:
By substituting Eqs. (11) and (12) into Eq. (10), we have

M
d2

dt2
þ C

d

dt
þ %K þ K1x1 þ K2x2

� �Xn1

i¼0

Xn2

j¼0

XijðtÞUiðx1ÞUjðx2Þ ¼ F ðtÞ:
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Note that the recurrent formula, Eq. (5), can be rewritten as

xUnðxÞ ¼ 1
2
fUnþ1ðxÞ þ Un�1ðxÞg:

Hence, we have

M
d2

dt2
þ C

d

dt
þ %K

� �Xn1

i¼0

Xn2

j¼0

Uiðx1ÞUjðx2ÞXijðtÞ

þ
1

2

Xn1

i¼0

Xn2

j¼0

½K1fUiþ1ðx1Þ þ Ui�1ðx1ÞgUjðx2Þ þ K2Uiðx1ÞfUjþ1ðx2Þ þ Uj�1ðx2Þg�XijðtÞ

¼ FðtÞ: ð13Þ

Multiplying both sides of Eq. (13) by Uiðx1ÞUjðx2Þ in sequence, and then taking the expectations,
owing to the orthogonality relationships of the Chebyshev Polynomials, we finally obtain the
following equivalent deterministic system of Eq. (13)

M
d2

dt2
þ C

d

dt
þ %K

� �
XijðtÞ þ 1

2
½K1fXiþ1;jðtÞ þ Xi�1;jðtÞg þ K2fXi;jþ1ðtÞ þ Xi;j�1ðtÞg�

¼ FðtÞd0id0j; i ¼ 0; 1; 2;y; n1; j ¼ 0; 1; 2;y; n2; ð14Þ

where X�1;jðtÞ;Xi;�1ðtÞ;Xn1þ1;jðtÞ; and Xi;n2þ1ðtÞ are supposed to be zero. If we take the permutation
of the subscript ij of XijðtÞ sequentially in such a way that the sums of i þ j are arranged in non-
decreasing order, then the stiffness matrix of Eq. (14) will be a sparse or band one with matrix
elements of which the order is the same as the stiffness matrix in the original system (10).
Now in Eq. (14) the system itself is deterministic, any effective method for response problems of

deterministic system can be applied to it, especially the unified approach for evolutionary random
response problems can be applied to it as well.
Owing to the assumption of xðt; x1; x2Þ; Eq. (12), and the orthogonality relationship, Eq. (4),

once the covariance matrices of all the XijðtÞ are obtained, the covariance matrix of xðtÞ can be
obtained as

E½xðtÞxTðtÞ� ¼
Xn1

i¼0

Xn2

j¼0

E½XijðtÞXT
ij ðtÞ�: ð15Þ

In our presentation essential for derivation are the following two assumptions: (1) the mutual
independence of random parameters, (2) the independence between random parameters and
random excitations. For the sake of clarity and readability we have just discussed the dynamic
response problems of structures with a random stiffness matrix only, but the method applies
equally well in principle to those structures with a random stiffness matrix, together with a
random mass matrix and a random damping matrix, as long as these matrices satisfy the above
two assumptions.
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4. Two numerical examples

4.1. Earthquake response of a SDOF random system

Consider a single-degree-of-freedom random system subject to the 1964 Niigata earthquake.
The evolutionary spectrum of the ground acceleration wðtÞ may be expressed as

Swðt;oÞ ¼ jAðt;oÞj2Sf ðoÞ; ð16Þ

where Sf ðoÞ ¼ S0 ¼ 2 cm2=s3; and

Aðt;oÞ ¼
e�at � e�bt

maxðe�at � e�btÞ
O4ðtÞ þ 4B2ðtÞO2ðtÞo2

½o2 � O2�2 þ 4B2ðtÞO2ðtÞo2

	 
1=2

ð17Þ

with a ¼ 0:25 s�1; b ¼ 0:5 s�1; and

BðtÞ ¼

0:64; 0ptp4:5 s;

1:25ðt � 4:5Þ3 � 1:875ðt � 4:5Þ2 þ 0:64; 4:5 sptp5:5 s;

0:015; tX5:5 s;

8><
>:

OðtÞ ¼

15:56 rad=s; 0ptp4:5 s;

27:12ðt � 4:5Þ3 � 40:68ðt � 4:5Þ2 þ 15:56 rad=s; 4:5 sptp5:5 s;

2:0 rad=s; tX5:5 s:

8><
>:

The random differential equation of the relative motion of the structure to the ground may be
written as

m .x þ c ’x þ kx ¼ �mwðtÞ;
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Fig. 2. Mean square random responses of x. (A) for Chebyshev polynomial approximation, (B) for Monte-Carlo

simulation.
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where m ¼ 1� 103 kg; c ¼ 6:3� 102 N s=m; k is a random parameter, which can be expressed as
k ¼ %k þ xk1; with %k ¼ 39:48� 103 N=m; k1 ¼ 3:95 N=m; and x is a physical random stiffness
coefficient with an arch-like PDF described by Eq. (1).
In calculation we took U0 up to U4 only. The numerical results for E½x2� are shown in Fig. 2,

where curve A is the numerical result by the Chebyshev Polynomial approximation, and curve B
results from the Monte-Carlo simulation method. Curves A and B almost coincide.
In our simulations the Monte-Carlo method is applied to samples of random parameters only.

The mean square evolutionary random responses for the sample systems are obtained by the
unified approach. Thus, the simulation efforts are greatly reduced as compared with those for
directly applying the Monte-Carlo method to combinations of both samples of random
parameters and random excitations. In this example the number of simulation samples for x is
taken as 50, equally spaced in �1 to +1.

4.2. Earthquake response of a three-story random structure

Consider a three-story random structure model subject to the same earthquake excitation as in
the previous example (Fig. 3). The random differential equation of the relative motion of the
structure to the ground may be written as

M .x þ C ’x þ Kx ¼ gwðtÞ;

where

M ¼

m1 0 0

0 m2 0

0 0 m3

2
64

3
75; C ¼

c1 þ c2 �c2 0

�c2 c2 þ c3 �c3

0 �c3 c3

2
64

3
75;

K ¼

k1 þ k2 �k2 0

�k2 k2 þ k3 �k3

0 �k3 k3

2
64

3
75; g ¼ �

m1

m2

m3

2
64

3
75:

We assume that matrices M and C are deterministic, and K is random with a deterministic
constant parameter k1 and two random parameters k2 and k3: Suppose that K can be
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expressed as

K ¼ %K þ
X2
i¼1

xiKi;

where x1 and x2 are physical random stiffness coefficients with the same arch-like PDF described
by Eq. (1). And the data are taken as follows:

m1 ¼ m2 ¼ m3 ¼ 2:917� 104 kg; c1 ¼ c2 ¼ c3 ¼ 2:5� 105 N s=m;

%K ¼ 3:5� 107
2 �1 0

�1 2 �1

0 �1 1

2
64

3
75N=m;

K1 ¼ 3:5� 106
1 �1 0

�1 1 0

0 0 0

2
64

3
75N=m;

K2 ¼ 7:0� 106
0 0 0

0 1 �1

0 �1 1

2
64

3
75N=m:

We took n1 ¼ n2 ¼ 3 in this example. The numerical results for the mean square evolutionary
random responses of the top floor, E½x2

3�; are shown in Fig. 4, where curve A results from the
three-story random structure by the Chebyshev Polynomial approximation; curve B results from
the sample structure with the maximum k2 and k3; and curve C results from the sample structure
with the minimum k2 and k3:
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Fig. 4. Mean square random responses of the top floor. (A) for the random system, (B) for the sample system with

maximum k2 and k3 (C) for the sample system with minimum k2 and k3:
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5. Conclusions

An alternative PDF for random parameters of a random system, namely an arch-like PDF is
suggested in this paper. To match such a PDF, a Chebyshev Polynomial approximation for
reducing the random system into its deterministic equivalent is also presented. Thus the response
problem of such a kind of random system can be transformed into that of a deterministic system,
so that any available effective method for solving the dynamic response problem of a deterministic
system can be applied to it. Particularly the unified approach to evolutionary random response
problems for a deterministic system now can be applied to a random system as well. Numerical
examples show that the suggested method is effective. As a matter of fact, the suggested
Chebyshev Polynomial approximation can be viewed as a new variation of the weighted residual
method in random space, so are the similar methods by other forms of orthogonal polynomial
approximations.
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